The Second Dirac Eigenvalue of a Nearly Parallel G2-manifold

نویسنده

  • THOMAS FRIEDRICH
چکیده

is the smallest eigenvalues of the square of the Riemannian Dirac operator D, see [6]. The question whether or not one can estimate the next eigenvalue μ2(D ) has not yet been investigated for Dirac operators. Remark that in case of the Laplacian acting on functions of an Einstein spaceM 6= S, there are lower estimates for small eigenvalues depending on the minimum of the sectional curvature, see [18], [19].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extrinsic Eigenvalue Estimates of the Dirac Operator

For a compact spin manifold M isometrically embedded into Euclidean space, we derive the extrinsic estimates from above and below for eigenvalues of the Dirac operators, which depend on the second fundamental form of the embedding. We also show the bounds of the ratio of the eigenvalues.

متن کامل

A holographic principle for the existence of parallel spinor fields and an inequality of Shi-Tam type

Suppose that Σ = ∂M is the n-dimensional boundary of a connected compact Riemannian spin manifold (M, 〈 , 〉) with nonnegative scalar curvature, and that the (inward) mean curvature H of Σ is positive. We show that the first eigenvalue of the Dirac operator of the boundary corresponding to the conformal metric 〈 , 〉H = H 〈 , 〉 is at least n/2 and equality holds if and only if there exists a non-...

متن کامل

Evolution of the first eigenvalue of buckling problem on Riemannian manifold under Ricci flow

Among the eigenvalue problems of the Laplacian, the biharmonic operator eigenvalue problems are interesting projects because these problems root in physics and geometric analysis. The buckling problem is one of the most important problems in physics, and many studies have been done by the researchers about the solution and the estimate of its eigenvalue. In this paper, first, we obtain the evol...

متن کامل

Manifolds with small Dirac eigenvalues are nilmanifolds

Consider the class of n-dimensional Riemannian spin manifolds with bounded sectional curvatures and diameter, and almost non-negative scalar curvature. Let r = 1 if n = 2, 3 and r = 2 + 1 if n ≥ 4. We show that if the square of the Dirac operator on such a manifold has r small eigenvalues, then the manifold is diffeomorphic to a nilmanifold and has trivial spin structure. Equivalently, if M is ...

متن کامل

The First Dirac Eigenvalue on Manifolds with Positive Scalar Curvature

We show that on every compact spin manifold admitting a Riemannian metric of positive scalar curvature Friedrich’s eigenvalue estimate for the Dirac operator can be made sharp up to an arbitrarily small given error by choosing the metric suitably.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011